Future Extension to Multi-objective Performance-based Sustainable Design

KHALID M. MOSALAM, PROFESSOR

SELIM GÜNAY, POST-DOC

HYERIN LEE, POST-DOC

UNIVERSITY OF CALIFORNIA, BERKELEY

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Introduction

Analogy to Hierarchy of Needs (Maslow, 1963)

□ Basic Needs: Safety Objective → PEER PBEE Probabilistic Formulation

- □ Upper Level Needs for sustainability: Environmental safety and human comfort objectives \rightarrow Uncertain and probabilistic by nature
- Motivation for an inherent extension of PEER methodology to a generalized probabilistic multi-objective framework

Objective	Required Analysis Type							
	Hazard	Structural	Damage	Climate	Energy	Sustainability	Life Cycle Cost	
Structural Safety	\checkmark	\checkmark	\checkmark				\checkmark	
Environmental Responsibility				\checkmark	\checkmark	\checkmark	\checkmark	
Human Comfort				\checkmark	\checkmark	\checkmark	\checkmark	

Extended Framework: Safety Objective

Structural Safety Objective:

 $P(DV) = \int \int P(DV|DM)p(DM|EDP)p(EDP|IM)p(IM)dIM dEDP dDM$

Extended Framework: Environmental **Responsibility Objective (ERO): Life Cycle Cost** $P(CSV) = \iint_{D} P(CSV | EM) p(EM | CV) p(CV) dCV dEM$ **Lifecycle Cost** Energy Climate Analysis Analysis **Analysis CSV: Cost/Saving Variable, e.g. Ratio initial cost/savings during lifecycle** EM: Energy measure, e.g. Energy consumption **CV: Climate Variable, e.g. Temperature change**

 $P(CSV) = \iint P(CSV | EM) p(EM | CV) p(CV) dCV dEM$

Lifecycle Cost Analysis

Energy Analysis

Climate Analysis

CSV : Cost/Saving Variable, e.g. Ratio initial cost/savings during lifecycle

- **EM** : Energy measure, e.g. Energy consumption
- **CV** : Climate Variable, e.g. Temperature change

Obtained products (previous slide) can be used in a systematic manner for decision making

Decision-Making Systems

- Is preference information required?
- Is preference information presented as relative weights?
- Will the weights be generated during the process?

MIVES (Model for Integration of Values for Evaluation of Sustainability): Decision-Making Process

- Tree Construction
- Value Function
- Weight Assignment
- Overall Evaluation and Selection of the Best Solution

□ MIVES: Decision-Making Process

Tree Construction

San José and Garrucho (2010); Pons (2011)

✓ Objectives

✓ Relevance

 \checkmark Difference-making for each one of the alternatives

✓ Minimal number of items

Iyengar (2012)

- ✓ <u>Cut</u>: Use 3 levels of unfolded branches, and every branch to have 5 sub-branches or less in the successive unfolding steps;
- ✓ <u>Concretize</u>: Use indicators that experts and stakeholders can understand;
- ✓ <u>Categorize</u>: Use more categories and fewer choices; and
- \checkmark Gradually increase the complexity.

16

MIVES: Decision-making Process

Value Functions

✓ Non-negative increasing/decreasing functions,

$$0 \leq V^i \left(X_k^i \right) \leq 1$$

- ✓ Linear, concave, convex, S-shaped, etc.
- ✓ Presence of value functions allows for consideration of a broad range of indicators and eliminates need for using indicators with same units.

Examples

□ MIVES: Decision-making Process

Weight Assignment

Requirement	W _{req} %	Criteria	W _{crit} %	i	Indicator	W_{ind} %	Unit	
Functional		Quality perception	30.0	1	User	75.0	0-5	
	10.0			2	Visitor	25.0	0-5	
	10.0	Adaptability to changes	70.0	3	Modularity	100.0	%	
Economic	50.0	Construction cost 50.0	50.0	4	Direct cost	80.0	\$	
			50.0	5	Deviation	20.0	%	
		Life cost	50.0	6	Utilization	40.0	\$	
				7	Maintenance	30.0	\$	
				8	Losses	30.0	\$	See slide 4
Social	20.0	Integration of science	10.0	9	New patents	100.0	#]
		÷	:	:	:	:	:	
Environmental	20.0	Construction	20.0	15	Water consumption	10.0	m ³	
				16	CO ₂ emission	40.0	Kg	
				17	Energy consumption	10.0	MJ	
				18	Raw materials	20.0	Kg	
				19	Solid waste	20.0	Kg	1
		Utilization	40.0	20	Noise, dust, smell	10.0	0-5	1
				21	Energy consumption	45.0	MJ/year	
				22	CO_2 emission	45.0	kg/year	1
		:	:	:	:	:	:]

✓ The value of each alternative is determined → The alternative that has the highest value, i.e. closest to 1.0, becomes the most suitable alternative, i.e. the "best" solution.

20

D PBE approach: **PBE-MIVES**

Multiple Indicators in a Direct Probabilistic Manner

Assume **3** indicators $DV_{CO2'}$, DV_E and DV_{ST} are considered and corresponding PDFs are:

$$f_{CO2}(DV_{CO2} = a) = A, \quad f_E(DV_E = b) = B, \quad f_{ST}(DV_{ST} = c) = C$$

For weights $W_{CO2'}$, W_E and $W_{ST'}$ the overall value for the indicators is:

$$V(a,b,c) = V_{CO2}(a) + V_{E}(b) + V_{ST}(c) = w_{CO2}u_{CO2}(a) + w_{E}u_{E}(b) + w_{ST}u_{ST}(c)$$

If DV_{CO2} , DV_E and DV_{ST} (with value functions u_{CO2} , u_E , and u_{ST}) are **mutually independent**, the joint PDF is:

$$f(a, b, c) = f_{CO2,E,ST}(DV_{CO2} = a, DV_E = b, DV_{ST} = c)$$

= $f_{CO2}(DV_{CO2} = a) f_E(DV_E = b) f_{ST}(DV_{ST} = c) = ABC$

else,

$$f(a,b,c) = f_{CO2,E,ST} (DV_{CO2} = a, DV_E = b, DV_{ST} = c)$$

= $f_{CO2} (DV_{CO2} = a) f_{E|CO2} (DV_E = b|DV_{CO2} = a) f_{ST|CO2,E} (DV_{ST} = c|DV_{CO2} = a, DV_E = b)$

Therefore, the conditional probability distribution should be defined.

$$P(DV^{n} = a) = p(DV > DV^{n} = a) = \int_{a}^{\infty} f_{DV}(DV) d(DV)$$

where $P(DV^n)$ is the POE of n^{th} value of DV, and $p(DV > DV^n = a)$ is the probability of DV exceeding a, n^{th} value of DV.

□ PBE approach: PBE-MIVES

Application to the UCS Building

 \checkmark Two alternatives with different fuel consumption (in Btu) ratios

Electricity : Natural gas = 5 : 2 (Plan 1), Electricity only (Plan 2)

- ✓ Bivariate lognormal distribution assumed for energy expenditure and CO₂ emission for **50** years (building life span).
- ✓ Each mean value estimated based on data for office buildings in the West-Pacific region (by DOE, EIA, & EPA).
- \checkmark Standard deviation assumed as 30% of the corresponding mean value.
- \checkmark Coefficient of correlation was assumed as 0.8.

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

□ PBE approach: PBE-MIVES

Application to the UCS Building

Requirement	<i>W_r</i> [%]	Criteria	i	Indicator	W _i [%]	Unit
Environmental	25.0	Utilization	1	CO ₂ emissions	100.0	1000 kips
Economic	75.0	Life cost	2	Energy expenditures	60.0	\$million
			3	Losses	40.0	\$million

Linearly decreasing value functions

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

22

□ PBE approach: PBE-MIVES

- The probabilistic nature of the indicators can be considered in MCDA either indirectly by the calculation of the value of each indicator in a probabilistic manner or directly by formulating the value determination equation in a probabilistic framework.
- ✓ The correlation between the different indicators is taken into account in the direct formulation and it is the preferred method when there is significant interdependency between indicators.
- As shown in the comparison of V_{prob} in the UCS example building, considered range of indicators can change the value of the alternatives and affect the final decision. Therefore, attention should be paid to the selection of the proper range of indicators.

Matlab code for PBE-MIVES

C:\Research 12\SinBe	rBEST\PBE-MCDM\loss data\PBEMIVESv4.m						
<u>File Edit Text Go</u>	<u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp 🏾 🛥						
: 🛅 🗃 🔳 🐰 🐂	🛍 🤊 (* 🍓 🖅 - 🗛 🖛 🔶 fiz, 🖻 - 🗟 🗶 🗐 🗣 👻						
÷ → □ ⊑ □ - 1.0	$+$ \div 1.1 × $ \mathscr{K}_{+} \mathscr{K}_{+} 0_{+}$						
58 - Vf=0;							
59 for i=:	1:nx1 —						
60 for	c j=1:nx2						
61 -	z(i,j)=((X(i,j)-mu1)^2.)/(sigma1^2.)+((Y(i,j))						
62 -	f12(i,j)=(1./(2.*pi*sigma1*sigma2*sqrt(1-rho^:						
63 -	f=f+f12(i,j)*(x1max-x1min)/nx1*(x2max-x2min)/1						
64	\$						
65	% value function						
66	\$						
67 -	<pre>if (X(i,j) < log(4))</pre>						
68 -	v1(i,j)=1.0;						
69 -	elseif (X(i,j) < log(36))						
70 -	v1(i,j)=1-1/32*(exp(X(i,j))-4);						
71 -	else v1(i,j)=0;						
72 -	end 💻						
73 -	if (Y(i,j) <log(20))< td=""></log(20))<>						
74 -	v2(i,j)=1.0;						
75 -	elseif (Y(i,j) <log(170))< td=""></log(170))<>						
76 -	<pre>v2(i,j)=1-1/150*(exp(Y(i,j))-20);</pre>						
77 -	else v2(i,j)=0;						
78 -	end						
79	t						
80 -	V12(i,j)=w1*v1(i,j)+w2*v2(i,j);						
81 -	<pre>x1norm=(exp(i*(x1max-x1min)/nx1+x1min)-exp((i-</pre>						
82 -	x2norm=(exp(j*(x2max-x2min)/nx2+x2min)-exp((j.						
< III	•						
	script Ln 12 Col 28 OVR						

