

Conditional Probabilistic Approach: Introduction

- Aimed to be practice-oriented
 - Currently employed mostly in the academic community
 - Expected to gain increasing acceptance in professional practice in the very near future
- Common standpoint of the methods: Use of intensity measure (IM) as an interface between seismology and structural engineering
- IM is commonly represented with a hazard curve
- Structural engineers need to have basic information about the process of obtaining a hazard curve, otherwise high potential to end up with incorrect seismic hazard representation

Excellent Review Article: Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? By J.J. Bommer and N.A. Abrahamson [*Bulletin of the Seismological Society of America*, **96**(6):1967–1977, Dec. 2006]

Conditional Probabilistic Approach: **SAC**⁽¹⁾/**FEMA**⁽²⁾

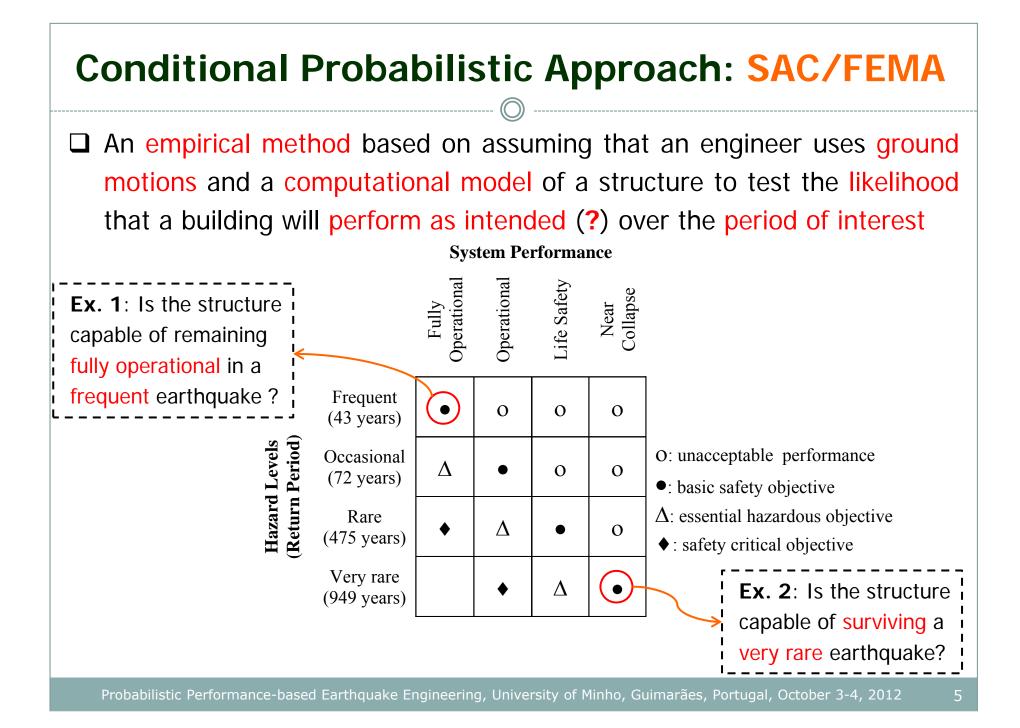
During 1994 Northridge earthquake, some steel-moment-resistingframe (SMRF) buildings underperformed by showing fractures in many beam-column joints which were supposed to remain elastic

Originally developed for investigation of this unexpected behavior and assessing the seismic performance of these SMRF buildings

□ Applicable to all building types with some adjustments

(1)SAC is a joint venture of the **S**tructural Engineers Association of California (SEAOC), the **A**pplied Technology Council (ATC), and **C**alifornia Universities for Research in Earthquake Engineering (CUREe), formed to address both immediate and long-term needs related to solving the problem of the WSMF connection.

(2)US Federal Emergency Management Agency (FEMA) www.fema.gov



- □ Can be considered as a special application of the more general PEER PBEE framework (*to be discussed later!*)
 - Complete consideration of uncertainty and probability
 - Performance assessment not with decision variables (DV)
 - Performance assessment considering
 - Intensity Measure (IM)
 - Engineering Demand Parameter (EDP)
 - Capacity of the Engineering Demand Parameter (ECP)
 - DV can be interpreted as a *binary* indicator of achieving the performance level:
 - O: unacceptable performance
 - 1: acceptable performance

Motivation for Consideration of Uncertainty
Traditional earthquake design (TED) philosophy:
Prevent damage in low-intensity EQ (50% in 50 years)
Limit damage to repairable levels in medium-intensity EQ (10% in 50 years)
Prevent collapse in high-intensity EQ (2% in 50 years)
If an engineer would accept that the world is deterministic, then in the case that he/she observes a structure not collapsing for the 2% in 50 years event, he/she could conclude that the probability of global collapse of the building would certainly be less than 2% in 50 years

□ There are many sources of uncertainty in this problem that need to be taken into account for a realistic assessment of the collapse probability of this building

□ These uncertainties will probably make the probability of global collapse much higher than 2% in 50 years

Types and Sources of Uncertainty

Alea (Latin)=Dice

Aleatory uncertainty (*randomness*): The uncertainty inherent in a nondeterministic (stochastic, random) phenomenon. Examples: The location and the magnitude of the next earthquake and

the intensity of the ground shaking generated at a given site

Epist (Greek): Knowledge

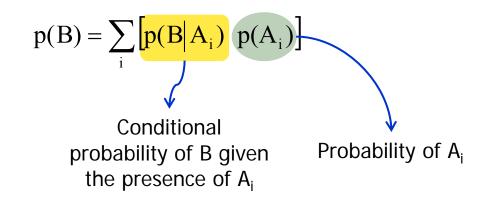
Epistemic uncertainty: The uncertainty attributable to incomplete knowledge about a phenomenon that affects our ability to model it. **Examples**: The definition of parameters and rules of a constitutive model for concrete

Background

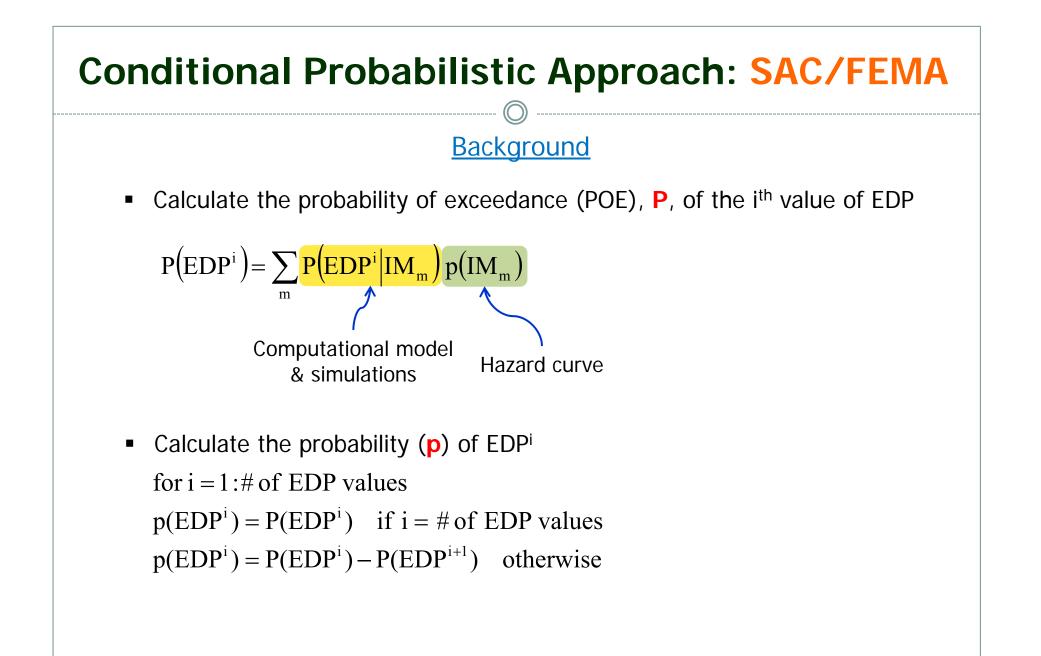
Total probability theorem:

Given n mutually exclusive events^{*} $A_1, ..., A_n$ whose probabilities sum to 1.0, then the probability of an arbitrary event B:

 $p(B) = p(B|A_1)p(A_1) + p(B|A_2)p(A_2) + \dots + p(B|A_n)p(A_n)$



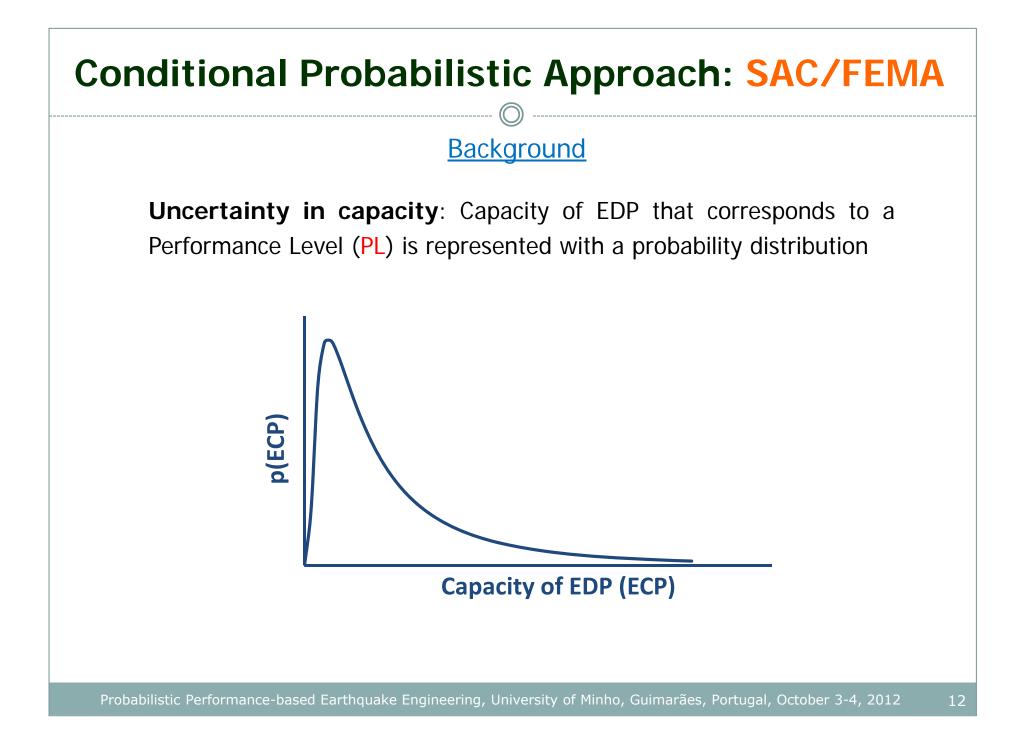
*Occurrence of any one of them automatically implies the non-occurrence of the remaining n-1 events



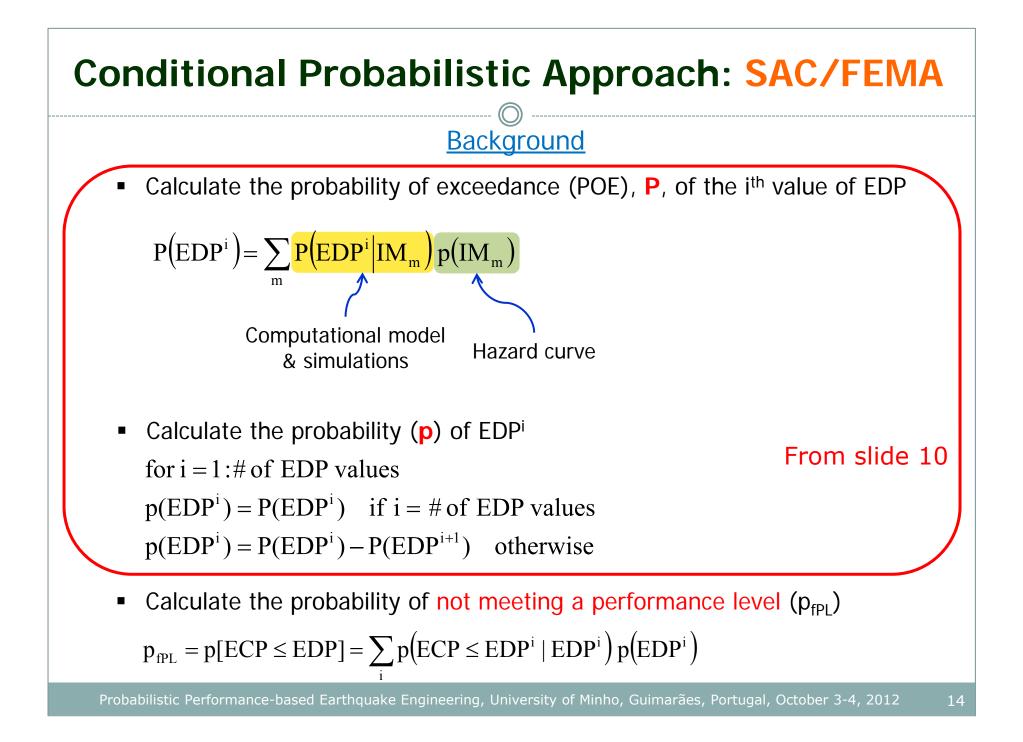
Background

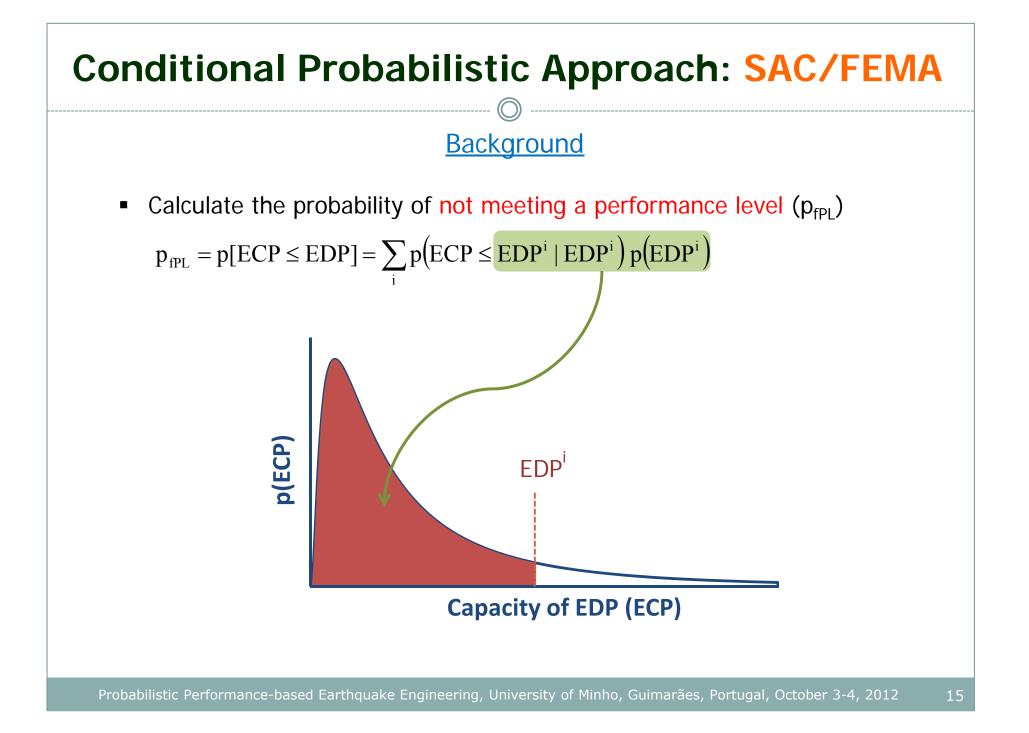
- If an engineer was sure that the structure would fail its performance level when it reached a certain *limiting* EDP value (EDP^L), then the probability of not meeting that performance level (p_{fPL}) would be P(EDP^L)
- However, the engineer cannot be sure about the above issue, since there is uncertainty in the corresponding capacity limit
- Theoretically, every value of EDP has a finite likelihood of making a structure to fail a performance level
- Uncertainty in the capacity of an EDP (ECP) should be considered for the calculation of p_{fPL}
- <u>Considering the uncertainty in capacity</u>: p_{fPL} is defined as the probability of ECP being smaller than EDP [p(ECP<EDP)]
- Same uncertainty is considered in a different format in Damage Analysis stage of PEER PBEE framework

11



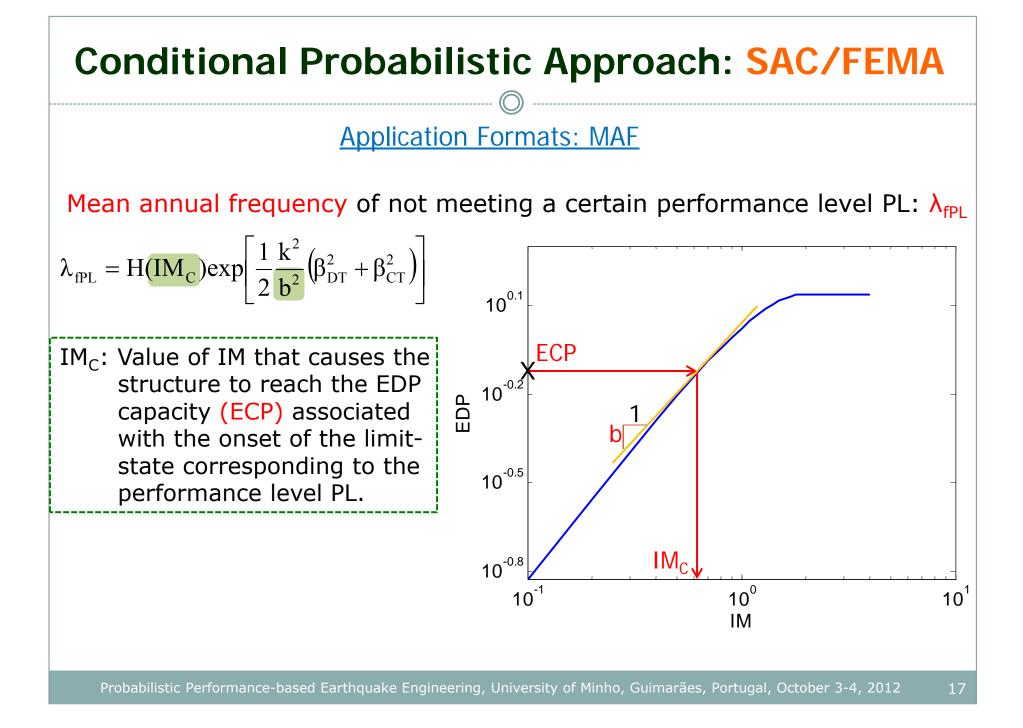
							Ba	<u>ackç</u>	grou	<u>ind</u>	
Table 6-7		leling Param nforced Cond			al Acceptanc	e Criteria	for Nonli	inear Pro	cedures-		FEMA-356 FIF PR < 0.01 radians \rightarrow PL = 10
			Modeling Parameters ³			Acceptance Criteria ³					
						Plastic Rotation Angle, radians				IS	\Rightarrow If 0.01 <pr<0.02 <math="">\rightarrow PL = LS</pr<0.02>
Conditions i. Beams controlled by flexure ¹			PR Plastic Rotation		Residual Strength	Performance Level					► If $0.02 < PR < 0.025 \rightarrow PL = CP$
							Component Type				
			Angle, radians	radians	Ratio	-	Primary	Secondary	,		
			a	b	c	10	LS	CP	LS	СР	No uncertainty in capacity
$\frac{\rho - \rho'}{\rho_{bal}}$	Trans. Reinf. ²	$\frac{V}{b_w d_s f_c}$									ightarrowPL = IO → p _{fPL} = P(PR=0.01)
≤ 0.0	С	≤ 3	0.025	0.05	0.2	0.010	0.02	0.025	0.02	0.05	$PL = LS \rightarrow p_{fPL} = P(PR=0.02)$
≤ <mark>0.0</mark>	С	≥6	0.02	0.04	0.2	0.005	0.01	0.02	0.02	0.04	I
≥ 0.5 ≥ 0.5	C C	≤3 ≥6	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03	$PL = CP \rightarrow p_{fPL} = P(PR=0.025)$
≤ 0.0	NC	≤ 3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03	
≤ 0.0	NC	≥6	0.01	0.015	0.2	0.0015	0.005	0.01	0.01	0.015	
≥ 0.5 ≥ 0.5	NC NC	≤ 3 ≥ 6	0.01	0.015	0.2	0.005	0.01	0.01	0.01	0.015	Uncertainty in capacity
		probat								- 1	$PL = IO → p_{fPL} ≠ P(PR=0.01)$ $PL = LS → p_{fPL} ≠ P(PR=0.02)$ $PL = CP → p_{fPL} ≠ P(PR=0.025)$

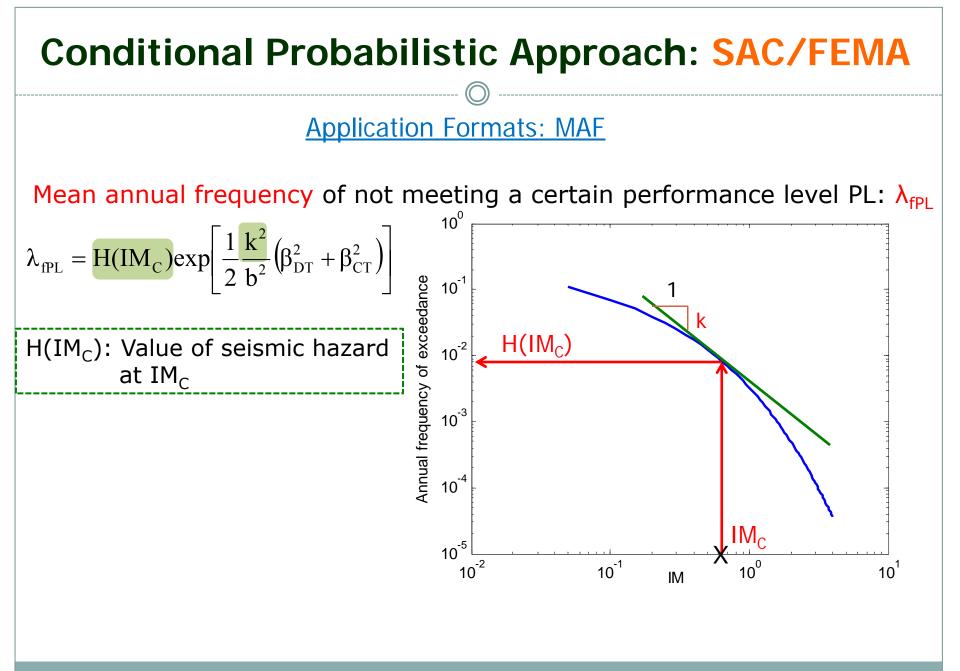




Application Formats

- > Approach requires large number of numerical simulations
- Computational effort introduced by the probability equations
- Two theoretically equivalent (with some practical differences) formats to reduce the computational burden:
 - <u>Mean Annual Frequency (MAF) Format</u>: A simple, closed-form evaluation of seismic risk (involving hazard, exposure, & vulnerability)
 - <u>Demand and Capacity Factored Design (DCFD) Format</u>: A check of whether the building satisfies the selected limit-state requirements





Application Formats: MAF

Mean annual frequency of not meeting a certain performance level PL: λ_{fPL}

$$\lambda_{\text{fPL}} = H(IM_{\text{C}}) \exp\left[\frac{1}{2} \frac{k^2}{b^2} (\beta_{\text{DT}}^2 + \beta_{\text{CT}}^2)\right] \qquad \begin{array}{c} \text{Aleatory} \\ \text{uncertainty} \\ \text{uncertainty} \\ \text{(Randomness)} \\ \end{array} \qquad \begin{array}{c} \text{Epistemic} \\ \text{Uncertainty} \\ \text{Uncertainty} \\ \end{array}$$

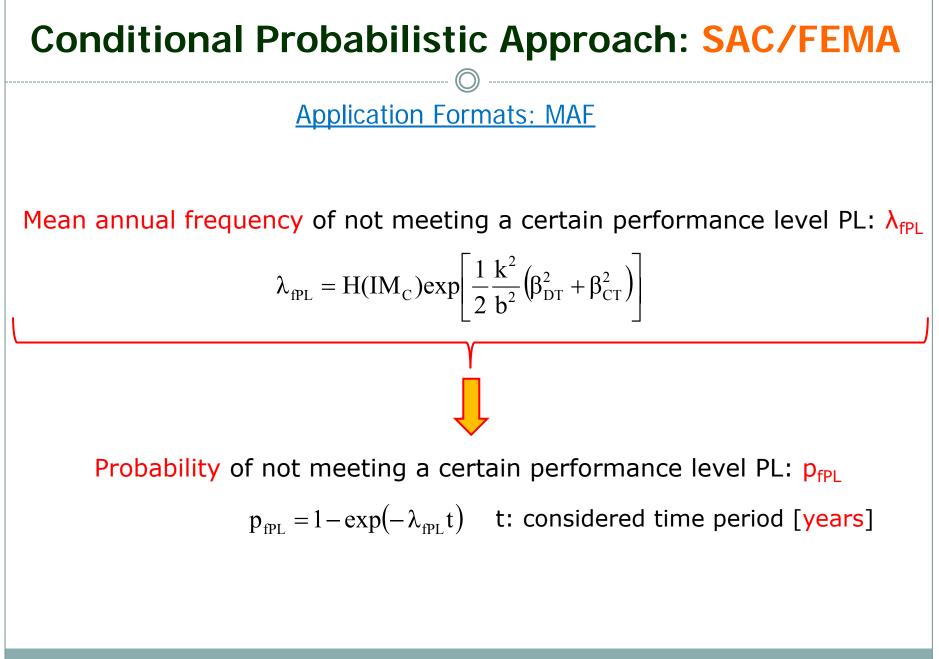
$$\beta_{\text{DT}}: \text{ Dispersion in } \underline{\text{D}}\text{emand} \qquad \Longrightarrow \qquad \beta_{\text{DT}} = \sqrt{\beta_{\text{DR}}^2 + \beta_{\text{DU}}^2} \\ \beta_{\text{CT}}: \text{ Dispersion in } \underline{\text{C}}\text{apacity} \qquad \Longrightarrow \qquad \beta_{\text{CT}} = \sqrt{\beta_{\text{CR}}^2 + \beta_{\text{CU}}^2} \\ \end{array}$$

Aleatory Uncertainty

- β_{DR} : Variability observed in structural response (Demand) from record-to-record
- β_{CR} : Natural variability observed in tests to determine the EDP capacity (ECP) of a structural or non-structural component

Epistemic Uncertainty

- β_{DU} : Uncertainty in modeling and analysis methods for estimating demand
- β_{CU} : Incomplete knowledge of the structure for estimating capacity

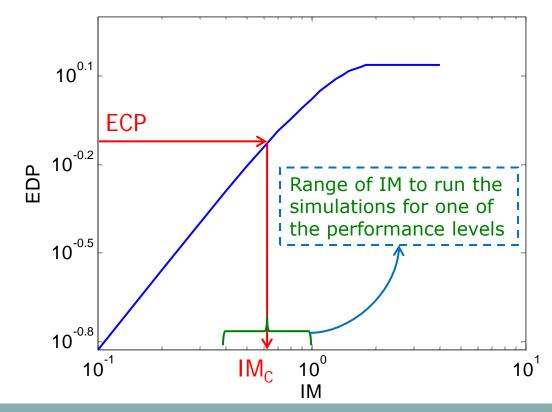


20

Application Formats: MAF

Advantage:

- Time history simulations do not need to be conducted for all IM values
- It may be sufficient to conduct the simulations for an estimated range of IM which covers the ECP values of the considered performance levels

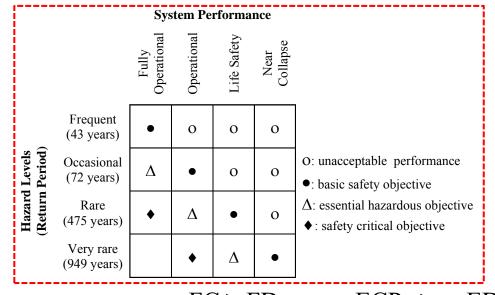


Application Formats: DCFD

- A check of whether a certain performance level has been met or violated
- Resembles the familiar Load and Resistance Factor Design (LRFD) of modern design codes
- Unlike the MAF format, it cannot provide an estimate of the annual frequency of exceeding a given performance level

Application Formats: DCFD

- FC: Factored capacity corresponding to the Performance Level
- FD_{λ} : Factored demand evaluated at the Hazard Level
- ECP_m: Median EDP capacity for the considered Performance Level
- $EDP_{m\lambda}$: Median demand evaluated at the IM level corresponding to λ



<u>A performance objective</u>:

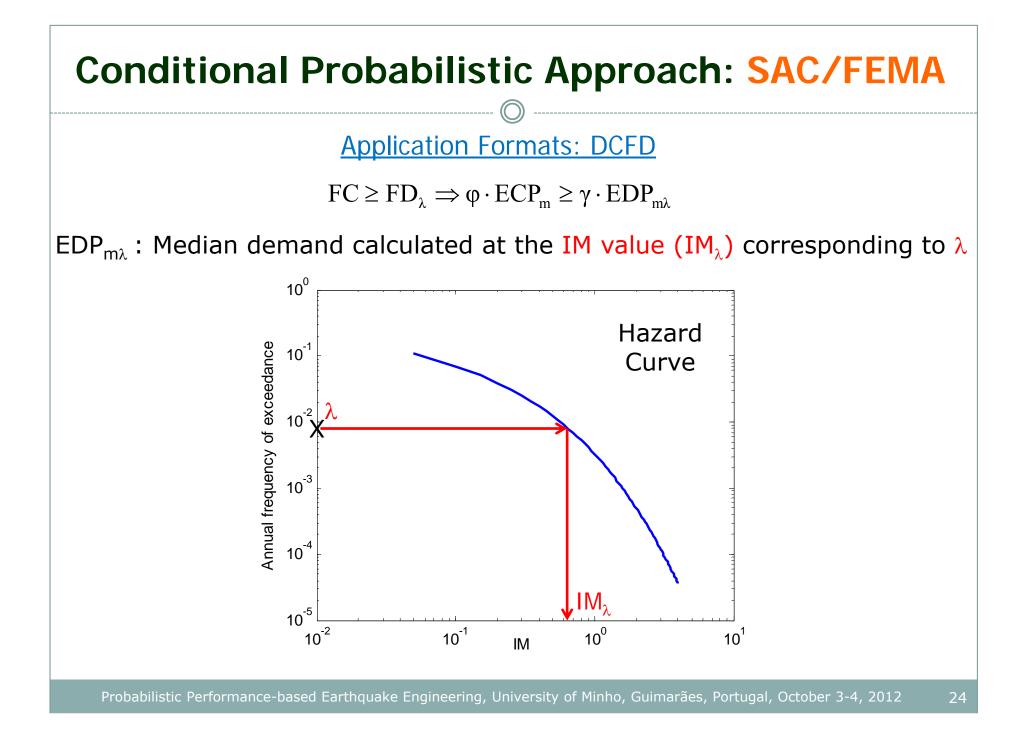
Satisfy a Performance Level under a given Hazard Level

λ represents the annual
 frequency of exceedance
 associated with the
 Hazard Level

23

 $FC \geq FD_{\lambda} \Longrightarrow \phi \cdot ECP_{m} \geq \gamma \cdot EDP_{m\lambda},$

- φ = Uncertainty Factor (~ Strength Reduction Factor),
- γ = Uncertainty Factor (~ Load Amplification Factor)



Application Formats: DCFD

 $FC \geq FD_{\lambda} \Longrightarrow \phi \cdot ECP_m \geq \gamma \cdot EDP_{m\lambda}$

$$\varphi = \exp\left[-\frac{1}{2}\frac{k}{b}\left(\beta_{CR}^{2} + \beta_{CU}^{2}\right)\right] \qquad \gamma = \exp\left[\frac{1}{2}\frac{k}{b}\left(\beta_{DR}^{2} + \beta_{DU}^{2}\right)\right]$$

Remark:

- Median values are considered for capacity and demand
- Uncertainty is considered through the use of ϕ and γ
- Guarantees the Performance Objective with a confidence value greater than 50%
- Modifications have been made in DCFD to control and increase the confidence level: Enhanced DCFD (EDCFD)

Application Formats: EDCFD

$$FC_{R} \ge FD_{R\lambda} \cdot \exp(K_{x}\beta_{TU}) \Longrightarrow \phi_{R} \cdot ECP_{m} \ge \gamma_{R} \cdot EDP_{m\lambda} \cdot \exp(K_{x}\beta_{TU})$$

$$\phi_{R} = \exp\left[-\frac{1}{2}\frac{k}{b}\beta_{CR}^{2}\right]$$
Only Aleatory
uncertainty
$$\beta_{TU} = \sqrt{\beta_{DU}^{2} + \beta_{CU}^{2}}$$
Epistemic
uncertainty

K_x: Standard normal variate (set of all random variables that obey a given probabilistic law) corresponding to the desired confidence level, α: K_x = 1.28 → α=90%; K_x = 0.00 → α=50%

EDCFD allows a user-defined **level of confidence** to be incorporated in the assessment.

Differing levels of confidence for:

- Ductile versus brittle modes of failure (larger K_x for brittle)
- Local versus global collapse mechanisms (larger K_x for global)

26

Conditional Probabilistic Approach: PEER PBEE

□ SAC/FEMA

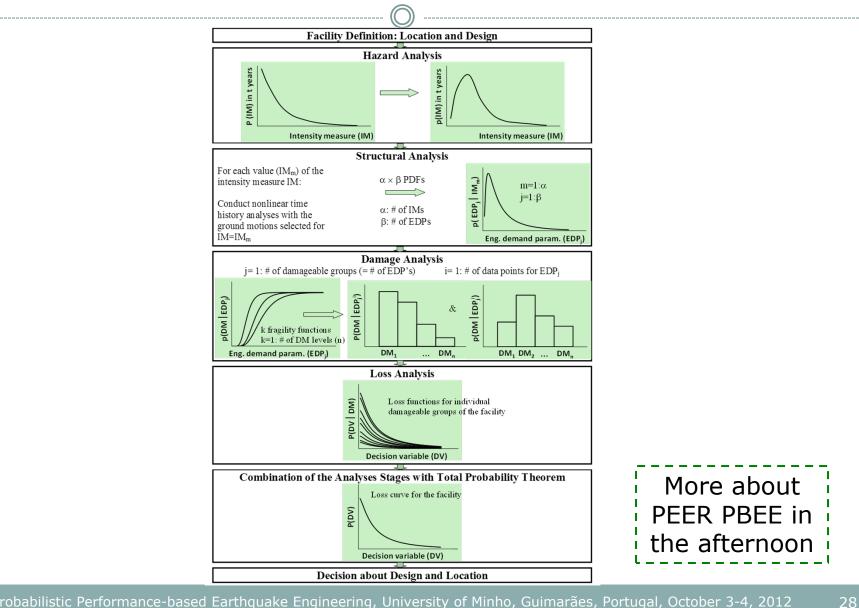
- Complete consideration of uncertainty and probability
- Performance assessment not with decision variables (DV)
- ➤ A special application of PEER PBEE framework

□ PEER PBEE framework

- Complete consideration of uncertainty and probability
- Performance assessment with decision variables in terms of the direct interest of various stakeholders
- Performance assessment considering:
 - Intensity Measure (IM)
 - Engineering Demand Parameter (EDP)
 - Damage Measure (DM)
 - Decision Variable (DV)

27

Conditional Probabilistic Approach: PEER PBEE



Unconditional Probabilistic Approach: Introduction

Conditional Probabilistic Approach (CPA)

- Practice-oriented
- Conditioned on IM
- Obtain the p(IM) from hazard curve
- Employ recorded ground motions compatible with IM

Unconditional Probabilistic
 Approach (UPA)
 ➢ More advanced
 ➢ Not conditioned on IM

Stochastic models to directly describe the random time-series of seismic motion in terms of macro-seismic parameters, e.g. magnitude, distance, ... etc.

29

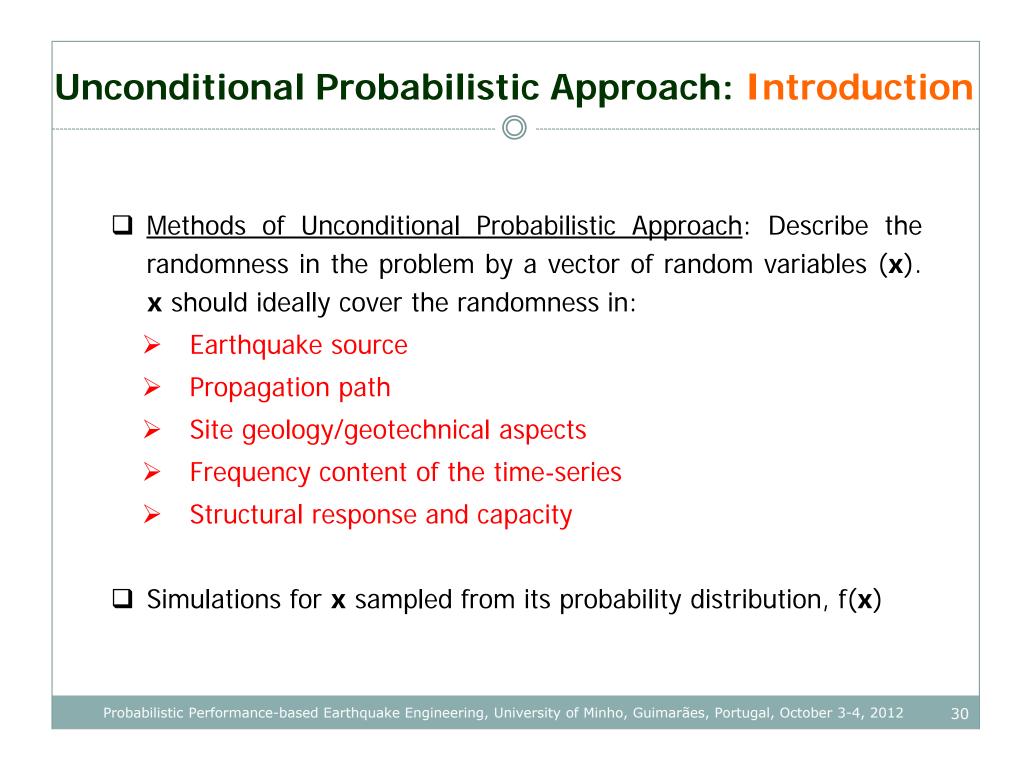
> Synthetic ground motions are employed in UPA

The main difference with the CPA is in the to description of seismic motion at the site (synthetic motions)

Replaced

by

UPA-related research is mostly conducted up to generation of ground motions



Simulation Methods

Simulation:

□ A robust way to explore the behavior of systems of any complexity

Based on the observation of system response to input

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T \implies f(\mathbf{x})$$
: probability distribution for \mathbf{x}

> Form a set of inputs of **x** from $f(\mathbf{x})$ $\mathbf{X}^{<i>}$

$$\mathbf{x}^{\langle i \rangle} = \begin{bmatrix} \mathbf{X}_{1i} & \mathbf{X}_{2i} & \dots & \mathbf{X}_{ni} \end{bmatrix}^{\mathsf{T}}$$

- Obtain the corresponding outputs
- Determine the distribution of the output through statistical post-processing

Simulation Methods: Monte Carlo Simulation (MCS)

- > A chosen set of inputs for \mathbf{x} : $\mathbf{x}^{\langle i \rangle} = \begin{bmatrix} x_{1i} & x_{2i} & \dots & x_{ni} \end{bmatrix}^T$
- If x^{<i>} fails in meeting certain performance requirements, then the contribution of x^{<i>} to the probability of not meeting those performance requirements (p_f) = f(x^{<i>})dx

> Then $p_f = \int_F f(\mathbf{x}) d\mathbf{x}$

F covers all $\mathbf{x}^{<i>}$ that fail in meeting the performance requirements

$$p_{f} = \int_{F} f(\mathbf{x}) d\mathbf{x} = \int I_{f}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = E[I_{f}(\mathbf{x})]$$

Indicator function =
$$\begin{cases} 1 & \text{if } \mathbf{x} \text{ belongs to } F \\ 0 & \text{otherwise} \end{cases}$$

32

Simulation Methods: Monte Carlo Simulation (MCS)

$$p_{f} = \int_{F} f(\mathbf{x}) d\mathbf{x} = \int \mathbf{I}_{f}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} = E[\mathbf{I}_{f}(\mathbf{x})]$$

Number of failed simulations

33

Monte Carlo Simulation:
$$p_f = E[I_f(\mathbf{x})] \cong \frac{1}{N} \sum_{i=1}^{N} I_f(\mathbf{x}^{}) = \frac{N_f}{N} = \hat{p}_f$$

Number of total simulations

Obtain samples of x^{<i>} from the distribution f(x)

• Evaluate the performance of the structure for each **x**<^{i>}

• Determine N_f and \hat{p}_f

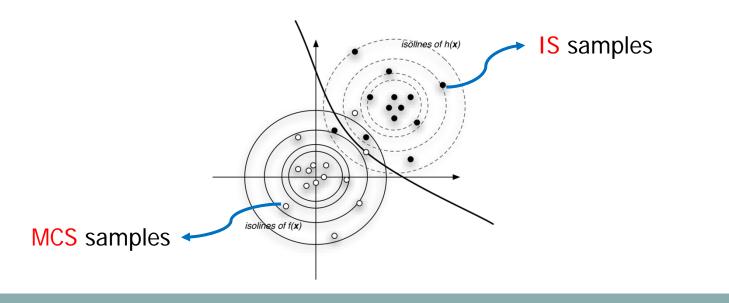
• \hat{p}_f is an unbiased estimator of p_f

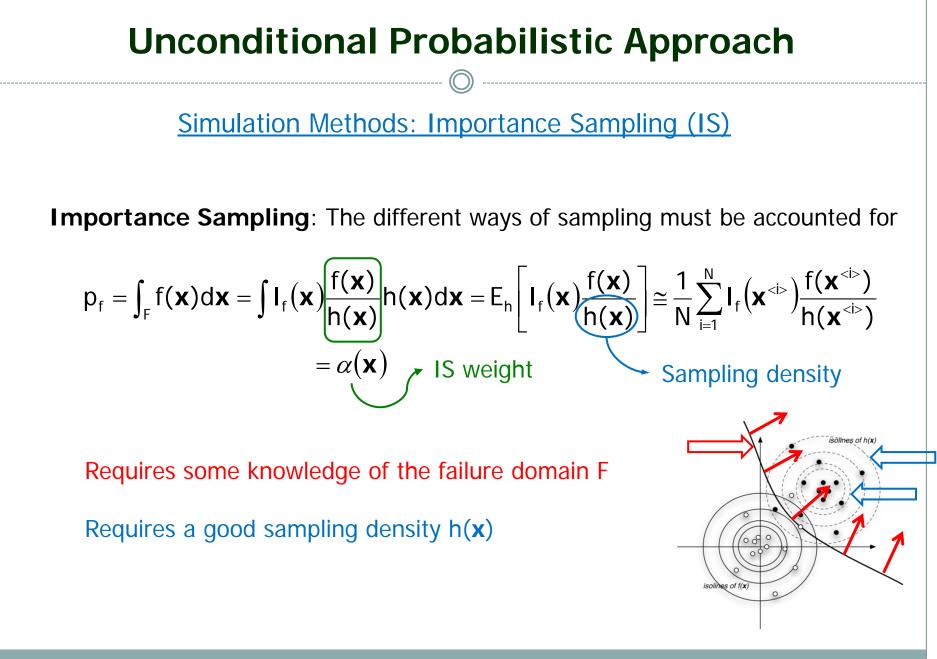
 Variance of p̂_f around p_f is proportional to p_f itself and decreases with increasing N

Simulation Methods: Importance Sampling (IS)

- For very small values of p_f, N may need to be substantially large to obtain a few outcomes for N_f
- A possible solution to avoid excessive number of simulations \rightarrow

Importance sampling (IS): Sample according to a more favorable distribution





Simulation Methods: IS w/ K-means Clustering (IS-K) (Jayaram & Baker, 2010)

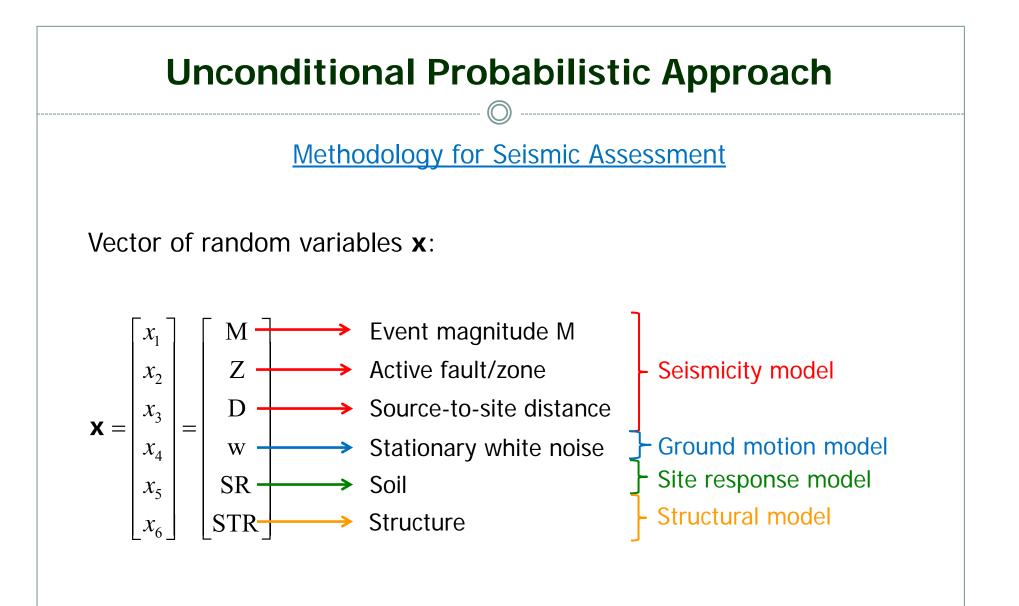
- For both MCS & IS methods, some of the samples could be redundant
- IS-K method identifies & combines redundant samples →
- Reduces the number of simulations further

In its simplest version, IS-K consists of **five** main steps:

Step 1: Pick (randomly) K samples

- <u>Step 2</u>: Calculate the cluster centroids (typically mean of the K samples)
- <u>Step 3</u>: Assign each sample to the cluster with the closest centroid
- Step 4: Recalculate the centroid of each cluster after the assignments
- Step 5: Repeat steps 1 to 3 until no more reassignments (in step 4) take place

Once all the events are clustered, a single random sample from each cluster is used to represent all samples in that cluster



Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

37

Methodology for Seismic Assessment: Seismicity Model

Seismicity model parameters M, Z and D sampled using simulation

Sampling for M

Monte Carlo Simulation

$$f(m) = \frac{\sum_{i=1}^{n_{f}} \lambda_{i} f_{i}(m)}{\sum_{i=1}^{n_{f}} \lambda_{i}}$$

Importance Sampling

 $f_i(m)$: probability distribution of M for the ith fault/source λ_i : activation frequency for the ith fault/source (mean annual rate of all events on the source, i.e. events with M>Lower bound M for that source) n_f : # active faults/sources

 $h(m) = \frac{1}{n_m} \frac{f(m)}{\int_m^{m_{k+1}} f(m) dm}$ h(m): Sampling density for m lying in the kth partition n_m: # magnitude intervals (partitions) from m_{min} to m_{max}

Importance Sampling and K-means clustering

K-means clustering groups a set of observations into *K* clusters such that the dissimilarity between the observations within a cluster is minimized

Step 1: Pick (randomly) K samples

Step 2: Calculate the cluster centroids (typically mean of the K samples)

Step 3: Assign each sample to the cluster with the closest centroid

- **Step 4**: Recalculate the centroid of each cluster after the assignments
- Step 5: Repeat steps 1 to 3 until no more reassignments take place

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Methodology for Seismic Assessment: Seismicity Model

Seismicity model parameters M, Z and D sampled using simulation

Sampling for Z

Given that an earthquake with magnitude M = m has occurred, the probability that the event was generated in the ith source is:

$$p(i|M = m) = \frac{\lambda_i f_i(m)}{\sum_{j=1}^{n_f} \lambda_j f_j(m)}$$

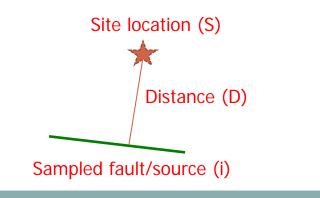
 $f_i(m)$: probability distribution of M for the ith fault/source λ_i : activation frequency for the ith fault/source n_f : number of active faults/sources

Active zone (Z) is sampled from its discrete probability distribution conditioned on M

Sampling for D

There is no further effort needed to sample D. It can be determined based on:

- The sampled fault/source
- The deterministic site location (S)



Methodology for Seismic Assessment: Ground Motion Model

Synthetic Ground Motion Models:

- Seismologically-based Models
- Empirical Models

Seismologically-based Models

- Models that are based on the physical processes of earthquake generation and propagation
- Such models have reached a stage of maturity
- Applied in regions of the world where data is not sufficient for a statistical approach to seismic hazard
- Applied also in some regions of the world where seismic activity is wellknown to (1) check their validity & (2) supplement existing information

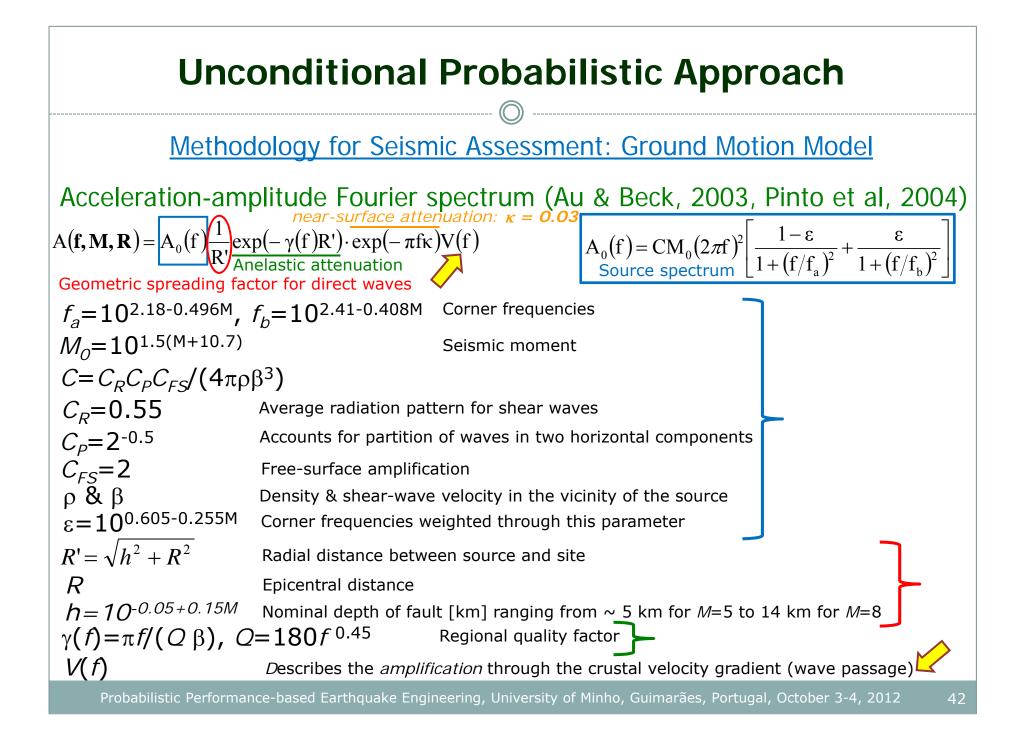
Methodology for Seismic Assessment: Ground Motion Model

Seismologically-based Models (Atkinson & Silva, 2000)

- Acceleration-amplitude Fourier spectrum (or Radiation spectrum)
- Generation of time history

Acceleration-amplitude Fourier spectrum (Au & Beck, 2003, Pinto et al, 2004) $A(\mathbf{f}, \mathbf{M}, \mathbf{R}) = A_0(f) \frac{1}{R'} \exp(-\gamma(f)R') \cdot \exp(-\pi f\kappa) V(f) \underset{\mathbf{k}}{\otimes} A_0(f) = CM_0(2\pi f)^2 \left[\frac{1-\varepsilon}{1+(f/f_a)^2} + \frac{\varepsilon}{1+(f/f_b)^2} \right] \underset{\text{spectrum}}{\text{spectrum}} \underset{\mathbf{k}}{\overset{\mathbf{h}}{\otimes}} \underset{\mathbf{h}}{\overset{\mathbf{h}}{\otimes}} \underset{\mathbf{h}}{\overset{\mathbf{h}}{\ast}} \underset{\mathbf{h}}{\overset{\mathbf{h}$

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012 41



Unconditional Probabilistic Approach Methodology for Seismic Assessment: Ground Motion Model Seismologically-based Models Acceleration-amplitude Fourier spectrum (or Radiation spectrum) Dependence on *M* & *R* introduced through α_3 Generation of time history α_1 : Normalizing factor \rightarrow envelope has **unit energy** U(t): Unit-step function Generation of time history $\bullet e(t; M, R) = \alpha_1 t^{\alpha_2 - 1} exp(-\alpha_3 t) U(t)$ amplitude-modulated unitvariance white noise white noise w(t) (temporal non-stationarity) Envelope e(t) multiply **DFT**: Discrete $e^{\infty}e(t;M,R)^2dt=1$ DFT Fourier Transform Frequency modulation A(f) IFT: Inverse Fourier Transform simulated ground motion

Methodology for Seismic Assessment: Ground Motion Model

Synthetic Ground Motion Models:

- Seismologically-based Models
- Empirical Models

Empirical Models

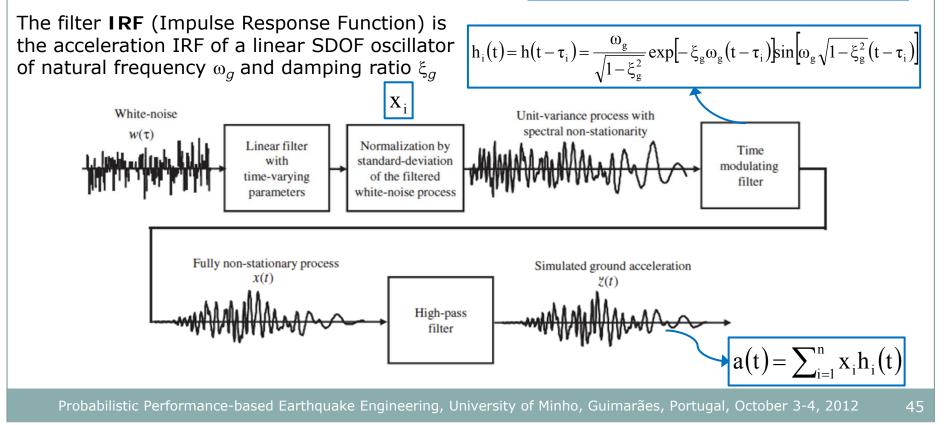
- Models consist of parameterized stochastic (random) process models
- Developed by observing that ground motions possess stable statistical nature given earthquake and site characteristics (M, R, & soil type)
- This observation led to the idea of considering the ground motion acceleration time-series as samples of random processes

Methodology for Seismic Assessment: Ground Motion Model

Synthetic Ground Motion Models:

- Seismologically-based Models
- Empirical Models

d Models $\omega_g = \omega_g(t)$ $\xi_g \xi_g(t)$ Empirical Models (Rezaeian & Der Kiureghian, 2010)



Methodology for Seismic Assessment: Site-Response Model

- Ground motion model determines ground motion time history for bedrock
- A site response model is used to obtain input motion to the structure at the surface
- Model the soil strata and corresponding stiffness, strength, & damping properties, e.g. a one-dimensional nonlinear, or equivalent linear, model)
- The strata thicknesses and properties possess uncertainty

Methodology for Seismic Assessment: Structural Model

- Finite element model which determines the response of the structure
- Both the structure itself, and the response-model implemented in the analysis software, are affected by uncertainty (more in the afternoon)

