Probabilistic PBEE Applications KHALID M. MOSALAM, PROFESSOR & SELIM GÜNAY, POST-DOC **UNIVERSITY OF CALIFORNIA, BERKELEY**

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Outline

- 1. Application I: Evaluation of the effect of unreinforced masonry infill walls on reinforced concrete frames with probabilistic PBEE
- Application III: PEER PBEE assessment of a shearwall building located on the University of California, Berkeley campus
- **3. Application II**: Evaluation of the seismic response of structural insulated panels with probabilistic PBEE

- > An idealized portal frame with and without infill
- Demonstration of hazard and structural analyses
- The geometry of the portal frame based on the dimensions of a single story RC frame with infill wall tested on UC-Berkeley shaking table [Hashemi & Mosalam, 2006].

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Structural Analysis

- □ Twenty ground motions [Lee & Mosalam, 2006] used in nonlinear time history analyses (explanation later in Application III)
- \Box Ground motions scaled for each of the considered Sa(T₁) value

Note: Use of **unscaled** ground motions should be the **preferred** method in a real-life application

- For demonstration purposes, only uncertainty in ground motion is considered; material uncertainty is not taken into consideration
- □ Total number of analyses conducted for an intensity level is twenty
- Peak interstory drift ratio (IDR) & peak roof acceleration (RA) are considered as the EDPs

Combination of Hazard and Structural Analyses

Total probability theorem:

Given n mutually exclusive events* $A_1, ..., A_n$ whose probabilities sum to 1.0, then the probability of an arbitrary event B:

 $p(B) = p(B|A_1)p(A_1) + p(B|A_2)p(A_2) + \dots + p(B|A_n)p(A_n)$

*Occurrence of any one of them automatically implies the non-occurrence of the remaining n-1 events

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012 15

- > University of California Science (UCS) building in UC-Berkeley campus
- Modern reinforced concrete shear-wall building
- High technology research laboratories for organismal biology, animal facilities, offices and related support spaces
- An example for which non-structural components contribute to the PBEE methodology due to valuable building contents, i.e. the laboratory equipment and research activities

- Six stories and a basement
- ➤ Rectangular in plan with overall dimensions of approximately 93.27 m x 32 m
- Gravity load resistance: RC space frame
- Lateral load resistance: Coupled and perforated shearwalls
- Floors consist of waffle slab systems
- Waffle slab is composed of a 114 mm thick RC slab supported on 508 mm deep joists in each direction.
- Foundation consists of a 965 mm thick mat

Hazard Analysis: Hazard Curve

- Lognormal distribution of Sa with the mean of 0.633g and standard deviation of 0.526g
- Matches with MAF of exceedance of Sa at periods of 0.2, 0.3 and 0.5 seconds reported by Frankel and Leyendecker [2001]

Structural Analysis

□ Two damageable groups

- <u>Structural components</u>: EDP= Maximum peak interstory drift ratio along the height (MIDR)
- <u>Non-structural components</u>: EDP = peak roof acceleration (RA)

□ Twenty ground motions

- Same site class as the building site and
- Distance to a strike-slip fault similar to the distance of the UCS building to Hayward fault
- Nonlinear time history analyses conducted for nine different scales for each ground motion

POE(%)	90	80	70	60	50	40	30	20	10
Sa (g)	0.18	0.25	0.32	0.39	0.47	0.57	0.71	0.90	1.39
Level #	1	2	3	4	5	6	7	8	9

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Damage Analysis

- □ Damage levels considered for structural components:
 - Slight
 - Moderate
 - Severe
- Damage levels of non-structural components: Two levels based on the maximum sliding displacement experienced by the scientific equipment relative to its bench-top surface [Chaudhuri and Hutchinson, 2005]
 - Sliding displacement of 5 cm
 - Sliding displacement of 10 cm

Damage Analysis

- □ The probability of a damage level given a value of the EDP, p(DM_k|EDP_jⁱ), is assumed to be lognormal with defined median & logarithmic standard deviation values:
 - Structural components: shearwall tests reported in Hwang and Jaw [1990]
 - Nonstructural components: shake table tests of Chaudhuri and Hutchison [2005]

Component	Damage level	EDP	Median	Coefficient of variation
	Slight	MIDR	0.005	0.30
Structural	Moderate	MIDR	0.010	0.30
	Severe	MIDR	0.015	0.30
Non structural	DM = 5 cm	PRA (g)	0.005	0.35
Non-structural	DM = 10 cm	PRA (g)	0.010	0.28

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Loss Analysis

- Decision variable (DV): monetary loss
- $\hfill \label{eq:scientific equipment [SE] <math display="inline">\approx$ **\$23 million** [Comerio, 2005]
- □ Loss functions: lognormal with median and coefficient of variation (COV):

Component	Damage level	Median Loss (\$million) [Percent of total value of SE]	Coefficient of variation			
	Slight	1.15 [5%]	0.4			
Structural	Moderate	3.45 [15%]	0.4			
	Severe	6.90 [30%]	0.4			
	DM = 5 cm	6.90 [30%]	0.2			
Non-structural	DM = 10 cm	16.10 [70%]	0.2			
Larger variation due to lack of information						
Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012						

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Recall HS Symposium (Two days ago!)

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012 41

HS Symposium (Two days ago): Test Matrix

Specimen	Protocol	Gravity	Nail spacing [in]	Remarks
S1	CUREE	No	6	Conventional wood panel
S2	CUREE	No	6	-
S3	CUREE	Yes	6	-
S4	HS	Yes	6	Near-fault pulse-type GM
S5	HS	Yes	3	Near-fault pulse-type GM
S6	CUREE	Yes	3	-
S7	HS	Yes	3	Long duration, harmonic GM
S8	HS	Yes	3	Near-fault GM; 3 stories computational substructure

- 1. Compare the responses of conventional wood panel vs SIPs
- 2. Investigate the effects of
- A parameter related to the design and construction of panels: Nail spacing
- Parameters related to loading:
 - ✓ Presence of gravity loading
 - ✓ Lateral loading: CUREE protocol vs HS
 - ✓ Type of ground motion (Pulse type vs Long duration, harmonic)
- A parameter related to HS: *Presence of an analytical substructure*

Objective: Make use of the tests for the performance evaluation of a 3D structure using PEER PBEE methodology

Probabilistic Performance-based Earthquake Engineering, University of Minho, Guimarães, Portugal, October 3-4, 2012

Structural Analysis

- □ 3182 ground motions from the recent version of PEER NGA database http://peer.berkeley.edu/peer_ground_motion_database/
- Unscaled ground motions
- \Box Ground motions seperated into bins based on Sa(T₁)
- $\Box T_1 \text{ is the period in the north south direction which is the critical mode} because of torsional coupling <math display="block">w_1 = w_2$
- Nonlinear time history analyses using the 3182 ground motions for each analytical model corresponding to a specimen
 EDP: Maximum Interstory Drift (MIDR)

Damage Analysis

- Conduct pushover analysis for each analytical model corresponding to a different specimen
- □ Determine the damage levels on each pushover curve
- Obtain MIDR values at the pushover steps corresponding to the determined damage levels for each analytical model
- □ Determine the median and coefficient of variation of MIDR for each damage level from the values obtained from each analytical model

Application II _____ Loss Analysis □ Determine the median value of loss corresponding to each damage level as a percentage of total value of the building □ Determine the corresponding coefficient of variation □ Obtain the loss curves from a probabilistic distribution

